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Analyticity of Electromagnetic Fields in Regions
Characterized by Analytic Dielectric

Parameters and Analytic Sources

S. Caorsi and M. Raffetto

Abstract—In this paper, the analyticity of time-harmonic electromag-
netic fields in regions characterized by analytic dielectric parameters and
analytic sources is proven.

Index Terms—Electromagnetic theory, theoretical electromagnetics.

I. INTRODUCTION

The knowledge of the analytic behavior of the electromagnetic field
is of fundamental importance for the solutions of some theoretical
electromagnetic problems—typically, uniqueness problems. Thus, for
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example, M̈uller [1] proved the uniqueness of the solutions of some
boundary value problems (e.g., Theorem 34) and the uniqueness of
the solutions of some scattering problems (e.g., Theorem 61) by using
the analyticity of the electromagnetic field in any source-free and
homogeneous region. Moreover, Caorsi and Raffetto [2] proved an
extension of the classical uniqueness theorem [3] for time-harmonic
electromagnetic boundary value problems by using a result (proved
by Müller) based again on the analyticity of the electromagnetic field
in any source-free and homogeneous region.

It is important to note that the indicated applications of the
analyticity of the electromagnetic field are restricted to homogeneous
dielectric materials. However, many problems of physical interest,
such as the spherical Luneberg lens problem [4], [5], or the study
of the propagation along the old graded index optical fibers, or
the reflection of electromagnetic waves from continuously stratified
media [6], or even the theory of Maxwell’s “fish-eyes” lens [4],
involve materials with continuously varying dielectric properties.

Consequently, it would be important to generalize the indicated
result of analyticity to “analytically inhomogeneous” materials, i.e.,
to materials having (nonconstant) analytic dielectric parameters. For
example, this generalization could allow further extensions of the
uniqueness theorem for time-harmonic electromagnetic boundary
value problems (i.e., to cases involving dielectric materials which
are lossy in a part of the region of interest and “analytically inhomo-
geneous” and lossless in the rest of the region).

The goal of this paper is to move toward such a generalization of
the analytic behavior of the electromagnetic field. In particular, it will
be shown that the electromagnetic field is analytic in any open region
characterized by analytic dielectric parameters and analytic sources.

II. A RESULT ON THEANALYTICITY OF THE ELECTROMAGNETIC FIELD

In this section, we will prove our main result about the analyticity
of the electromagnetic field. It is important to note that in this paper
a scalar or vector field is called analytic in an open region
 � R3

if it is defined in
 and if it can be developed in multiple power
series in a neighborhood of every point belonging to
 [7, p. 212],
[8, p. 170]. Then, in particular, by “analyticity of the electromagnetic
field in 
,” we mean that the electric and magnetic fields can be
developed in multiple power series in a neighborhood of every point
belonging to
.

Theorem Let 
 be an open region inR3. Moreover, letE and
H be twice continuously differentiable vector fields in
 (i.e.,
E 2 [C2

(
)]
3 andH 2 [C2

(
)]
3), such that

r�E(r) = �j!�(r)H(r); in 


r�H(r) = J(r) + j!"(r)E(r); in 

(1)

where! is the angular frequency (assumed to be strictly positive),
"(r) and�(r) are complex scalar fields analytic in
, andJ(r), which
represents the source of the electromagnetic field, is a complex vector
field analytic in
.

ThenE andH are analytic vector fields in
.
Proof: By combining both equations appearing in (1), we obtain

r�
1

�(r)
r�E(r) =�j!r�H(r)

=�j!J(r) + !
2
"(r)E(r); in 
:

(2)

By using the vector identity

r� (uV) = ru�V + ur�V (3)
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we can obtain an equivalent expression for the left-hand side (LHS)
term (it is important to note that the indicated transformation is valid
as a consequence of the hypothesisE 2 [C2(
)]3):

r
1

�(r)
� [r�E(r)] +

1

�(r)
r� [r�E(r)]: (4)

By virtue of the other vector identity

r� (r�V) = r(r �V)�r
2
V (5)

the LHS term of (2) can be written as follows:

r
1

�(r)
� [r�E(r)] +

1

�(r)
r[r � E(r)]�

1

�(r)
r
2
E(r)

(6)

and (2) becomes

r
1

�(r)
� [r�E(r)] +

1

�(r)
r[r � E(r)]�

1

�(r)
r
2
E(r)

= �j!J(r) + !
2
"(r)E(r); in 
: (7)

By using the well-known property

r � (r�V) = 0 (8)

for any twice continuously differentiable vector field (H 2 [C2(
)]3

is important in this case), we obtain the following from (1):

j!r � ["(r)E(r)] = �r � J(r) (9)

and, by virtue of the vector identity

r � (uV) = ru �V + ur �V (10)

we obtain

j!E(r) � r"(r) + j!"(r)r � E(r) = �r � J(r) (11)

which is equivalent to

r � E(r) =
�j!E(r) � r"(r)�r � J(r)

j!"(r)
(12)

where the denominator is different from zero, since! has been
assumed to be strictly positive and at least the real part of"(r) is
strictly positive.

By substituting the right-hand side (RHS) term of (12) for the
divergence of the electric field in (7), we obtain

r
1

�(r)
� [r�E(r)] +

1

�(r)

r
�j!E(r) � r"(r)�r � J(r)

j!"(r)
�

1

�(r)
r
2
E(r)

= �j!J(r) + !
2
"(r)E(r); in 
: (13)

By moving all the unknown terms to the LHS and all the “source”
terms to the RHS, we obtain

r
2
E(r) +r

E(r) � r"(r)

"(r)
+ �(r)

[r�E(r)]�r
1

�(r)
+ !

2
"(r)�(r)E(r)

= j!�(r)J(r)�r
r � J(r)

j!"(r)
; in 
: (14)

This is a linear system of second-order partial differential equa-
tions. Systems of partial differential equations are classified by type,
according to the properties of the characteristic determinant [9]. This
is, for the particular case of system (14), the determinant of a 3� 3
matrix, A, whose element in theith row andjth column,Aij , is

given by the sum of the coefficients of the second-order derivatives
@2Ej=@xl@xm; l; m = 1; 2; 3, in theith equation, multiplied by the
real second-order polynomials�l�m, where�1, �2, and�3 are real
parameters [9]. Thus for example, assuming a system of Cartesian
coordinates, i.e.,x1 = x, x2 = y, x3 = z, E1 = Ex, E2 = Ey, and
E3 = Ez , system (14) is characterized by

A11 =

3

l=1

3

m=1

alm �l�m (15)

wherealm is the coefficient of@2E1=@xl@xm in the first equation
of system (14). Then

A11 = �
2

1 + �
2

2 + �
2

3: (16)

Analogously,

A22 = A33 =�
2

1 + �
2

2 + �
2

3 (17)

and

A12 = A13 = A21 =A23 = A31 = A32 = 0 (18)

i.e.,

A =
�21 + �22 + �23 0 0

0 �21 + �22 + �23 0
0 0 �21 + �22 + �23

(19)

and the characteristic determinant is

k(�1; �2; �3) = (�21 + �
2

2 + �
2

3)
3
: (20)

According to [9], system (14) is called uniformly elliptic in the
domain
 if we can indicate nonzero constantsk0 and k1 of the
same sign, such that

k0(�
2

1 + �
2

2 + �
2

3)
3
� k(�1; �2; �3) � k1(�

2

1 + �
2

2 + �
2

3)
3 (21)

everywhere in
.
By using (20), we can obviously conclude that system (14) is

uniformly elliptic in 
 and in particular, elliptic in
 [9] (see also
[7]). Moreover, as a consequence of the hypotheses on the analyticity
in 
 of the dielectric parameters and sources, (14) is characterized
by analytic coefficients (in
) and by an analytic known term (in
).
Then, according to [7], any twice continuously differentiable solution
of (14) is analytic in
, i.e.,E is analytic in
.

By using an analogous procedure, we could also prove the
analyticity of the magnetic field. However, this result can also
be obtained by using

H(r) =
r�E(r)

�j!�(r)
(22)

and the analyticity ofE and� in 
 (having assumed! > 0).
As a final remark, it could be important to note that

J(r) = 0 8 r 2 
 is a vector-field analytic in
. Then, the
theorem also holds in this case and, consequently, we can conclude
that any twice continuously differentiable solution of the source-free
problem

r�E(r) = �j!�(r)H(r); in 

r�H(r) = j!"(r)E(r); in 


(23)

is analytic in
.

III. CONCLUSIONS

A proof of the analytic behavior of time-harmonic electromagnetic
fields in open regions characterized by analytic dielectric parameters
and analytic sources has been presented. This result can be of some
importance for theoretical questions in electromagnetics, typically in
proving uniqueness theorems.
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Effect of Finite Metallization and Inhomogeneous
Dopings on Slow-Wave-Mode Propagation

Jakub J. Kucera and Ronald J. Gutmann

Abstract— A finite-element simulation has been implemented
to evaluate the slow-wave-mode propagation characteristics in
metal–insulator–semiconductor (MIS) waveguiding structures. Particular
emphasis has been placed on coplanar waveguides compatible with
silicon integrated circuits (IC’s), with an objective of evaluating the effect
of inhomogeneous doping on propagation characteristics. The simulator
has been successfully benchmarked against a number of cases presented
in the literature, including MIS coplanar waveguides. The effect of
inhomogeneous doping and finite metallization in maintaining a large
slowing factor while reducing the attenuation constant and increasing
transmission-line Q is presented, and constraints on slow-wave-mode
passive components are discussed.

Index Terms—Coplanar waveguides, slow-wave mode.

I. INTRODUCTION

There is continued interest in slow-wave-mode propagation in
silicon integrated circuits (IC’s), both in preventing such propagation
in digital IC’s and in utilizing such propagation in microwave-analog
IC’s for passive components. In the latter application, maintaining a
high slowing factor and achieving a low attenuation factor are critical.
Work to date indicates that adjusting dimensional and electrical
parameters with uniform semiconductor doping does not result in
propagation characteristics useful for passive components [1]–[4],
although simulation results obtained with nonuniform doping profiles
indicate that more attractive characteristics can be obtained [5], [6].

In this paper, a two-dimensional (2-D) electromagnetic simulator
is developed to determine the propagation characteristics of
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TABLE I
PERCENTAGE OF THECONDUCTORLOSS TO THEOVERALL LOSS FOR AMIS
COPLANAR WAVEGUIDE (w = 50 �m, tox = 0:1 �m, d1 = 150 �m,

d2 = 660 �m, � = 3:7 S/mm,tm = 2 �m, and�m = 2:7 � 10
4 S/mm)

metal–insulator–semiconductor (MIS) structures with arbitrarily
doped substrates based upon the finite-element method (FEM).
Since the propagating modes within an inhomogeneous structure
are hybrid, quasi-static approaches can only be used in limited
cases. In particular, when dealing with arbitrary substrate dopings,
a quasi-static approach is insufficient and a full-wave analysis is
required. With our FEM simulator, the advantages of lateral doping
profiles on propagation characteristics of coplanar waveguide (CPW)
structures have been evaluated. The influence of line parameters
such as the finite metallization on the propagation characteristics of
the slow-wave mode is presented, and upper bounds of achievable
transmission-line quality factors are discussed.

II. EFFECT OFFINITE METALLIZATION AND INHOMOGENEOUSDOPINGS

The effect of quantities such as center strip or slot width, oxide
thickness, and substrate resistivity on the slow-wave-mode propa-
gation in MIS CPW’s has been extensively studies [3], [5], [7],
but the effect of imperfect conductors generally has been neglected.
While the finite thickness of the metallization has a minor effect, the
conductivity is of great importance. It is known that with decreasing
linewidth, the metal conductor losses increase and can constitute
the dominant loss mechanism [4]. In the lower gigahertz range, the
slowing factor is also affected to a large extent since the current
penetrates deep into the metal surface so that the metal behaves like
a very lossy dielectric. The surface-impedance approach based on the
skin depth becomes questionable, because the effect of the lossy metal
on the slowing factor is ignored and the current is not necessarily
confined to the surface of the conductor. In our FEM approach
the metal losses and the field penetration within the conductor are
precisely handled by treating the metal layers as lossy dielectrics
with a dielectric constant of unity. We estimate the contribution of
the metal losses to the overall losses for a particular waveguide
by calculating the attenuation for both a perfect and a lossy metal
conductor. The metal losses dominate the overall losses at 1 GHz
even for a wide center strip (100�m), and even at 10 GHz they
cannot be neglected for narrow strips, as shown in Table I.
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